Classes and Objects ¢ 101

Class : ITEM ITEM
DATA [getdataq
number
cost

FUNCTIONS

getdata() | | e

putdata()

(a) (b)

......... putdata()
[

JROR—

Fig. 5.2 < Representation of a class %

item x; // memory for x is created
creates a variable x of type item. In C++, the class variables are known as objects. Therefore,
x is called an object of type item. We may also declare more than one object in one statement.
Example:

item x, y, z;

The declaration of an object is similar to that of a variable of any basic type. The necessary
memory space is allocated to an object at this stage. Note that class specification, like a
structure, provides only a template and does not create any memory space for the objects.

Objects can also be created when a class is defined by placing their names immediately
after the closing brace, as we do in the case of structures. That is to say, the definition

class item

.....

would create the objects x, y and z of type item. This practice is seldom followed because we
would like to declare the objects close to the place where they are used and not at the time
of class definition.

Accessing Class Members

As pointed out earlier, the private data of a class can be accessed only through the member
functions of that class. The main() cannot contain statements that access number and
cost directly. The following is the format for calling a member function:

102e Object-Oriented Programming with C++

object-name.function-name (actual-arguments);

For example, the function call statement
x.getdata(100,75.5);

is valid and assigns the value 100 to number and 75.5 to cost of the object x by implementing
the getdata() function. The assignments occur in the actual function. Please refer Sec. 5.4
for further details.

Similarly, the statement

x.putdata();

would display the values of data members. Remember, a member function can be invoked
only by using an object (of the same class). The statement like

getdata(100,75.5);
has no meaning. Similarly, the statement

Xx.number = 100;
is also illegal. Although x is an object of the type item to which number belongs, the number
{declared private) can be accessed only through a member function and not by the object directly.

It may be recalled that objects communicate by sending and receiving messages. This is

achieved through the member functions. For example,

x.putdata();

sends a message to the object x requesting it to display its contents.
A variable declared as public can be accessed by the objects directly. Example:

class xyz
{
int x;
int y;
public:
int z;

.....

; // error, x is private
0 // OK, z is public

.....

Classes and Objects 0103

rote

The use of data in this manier defeats the very idea of data hiding and therefore should
be avoided.

[5.4 Defining Member Functions

Member functions can be defined in two places:

Qutside the class definition.
Inside the class definition.

It is obvious that. irrespective of the place of definition, the function should perform the
same task. Therefore. the code for the function body would be identical in both the cases.
However, there is a subtle difference in the way the function header is defined. Both these
approaches are discussed in detail in this section.

Outside the Class Definition

Member functions that are declared inside a class have to be defined separately outside the
class. Their definitions are verv much like the normal functions. They should have a function
header and a function body. Since ('++ does not support the old version of function definition,
the ANSI prototype torm must be used for defining the function header.

An important difference between a member function and a normal tunction is that a
member function incorporates a membership 'identity label' in the header. This 'label' tells
the compiler which class the function belongs to. The general form of a member function
definition is:

return-type class-name :: function-name {argument deciaration)
{
Function pody

}

The membership label class-name = tells the compiler that the function function-name
belongs to the class class name. That is, the scope of the function is restricted to the class-
name specified in the header line. The symbuol @2 is called the scope resolution operator.

For instance, consider the member functions getdata() and putdata() as discussed above.
They may be coded as follows:

void item :: getdata{int a, float b)
{
number = a;

cost = b;

104 & Object-Oriented Programming with C++

void item :: putdata(void)

{
cout << "Number :" << number << "\n";
cout << "Cost 1" << cost << "\n%;

}

Since these functions do not return any value, their return-type is void. Function
arguments are declared using the ANSI prototype.

The member functions have some special characteristics that are often used in the program
development. These characteristics are :

% Several different classes can use the same function name. The 'membership label’
will resolve their scope.

Member functions can access the private data of the class. A non-member function
cannot do so. (However, an exception to this rule is a friend function discussed later.)

A member function can call another member function directly, without using the
dot operator.

Inside the Class Definition

Another method of defining a member function is to replace the function declaration by the
actual function definition inside the class. For example, we could define the item class as
follows:

class item

{
int number;
float cost;

public:
void getdata(int a, float b); // declaration
// inline function
void putdata(void) // definition inside the class

{
cout << number << "\n";
cout << cost << "\n";

s

When a function is defined inside a class, it is treated as an inline function. Therefore, all
the restrictions and limitations that apply to an inline function are also applicable here.
Normally, only small functions are defined inside the class definition.

|5.5 A C++ Program with Class

All the details discussed so far are implemented in Program 5.1.

¢ 105

Classes and Objects

#include <iostream>
using namespace std;

class item
{
int number; // private by default
float cost; // private by default
public:
void getdata(int a, float b); // prototype declaration,
// to be defined
// Function defined inside class
void putdata(void)

cout << "number :" << number << "\n";
cout << "cost " o<< cost << "\n";

}
}s
Jleeviiiiiiiin Member Function Definition
void item :: getdata(int a, float b) // use membership label
{
number = a; // private variabies
cost = b; // directly used
}
1 Main Programc.eeieiiiiiia.
int main()
{
item x;// create object x
cout << "\nobject x " << "\n";
x.getdata(100, 299.95); // call member function
x.putdata(); // call member function
item y; // create another object
cout << \nobject y" << "\n";
y.getdata (200, 175.50);
v.putdata();
return 0;
}

PROGRAM 5.1

106 Object-Oriented Programming 1with C++

This program features the class item. This class contains two private variables and two
public functions. The member function getdata() which has been defined outside the class
supplies values to both the variables. Note the use of statements such as

number = a;

in the function definition of getdata(). This shows that the member functions can have
direct access to private data items.

The member function putdata() has been defined inside the class and therefore behaves
like an inline function. This function displays the values of the private variables number

and cost.

The program creates two objects, x and y in two different statements. This can be combined
in one statement.

item x, y; // creates a list of objects
Here is the output of Program 5.1:

object x

number :100

cost :299.95

object y

number :200

cost :175.5

For the sake of illustration we have shown one member function as inline and the other
as an 'external' member function. Both can be defined as inline or external functions.

|5.6 Making an Outside Function Inline

One of the objectives of OOP is to separate the details of implementation from the class
definition. It is therefore good practice to define the member functions outside the class.

We can define a member function outside the class definition and still make it inline by
Jjust using the qualifier inline in the header line of function definition. Example:

class item

public:
void getdata(int a, float b); // declaration
bs

Classes and Objects 0107

inline void item :: getdata(int a, float b) // definition
{
number

=a;
cost = b;

I5.7 Nesting of Member Functions

We just discussed that a member function of a class can be called only by an object of that
class using a dot operator. However, there is an exception to this. A member function can be
called by using its name inside another member function of the same class. This is known
as nesting of member functions. Program 5.2 illustrates this feature.

#include <iostream>
using namespace std;

class set
{
int m, n;
public:
void input(void);
void display(void);
int largest{void);

}s

int set :: largest(void)
{
if(m >= n)
return(m);
else
return{n);

}

void set :: input(void)

{
cout << "Input values of m and n" << "\n";
cin >>m >> n;

}

void set :: display(void)
{

(Contd)

108e Object-Oriented Programming with C++

cout << "Largest value = "

<< largest() << "\n"; // calling member function

}
int main()
{

set A;

A.input();

A.display();

return 0;

PROGRAM 5.2

The output of Program 5.2 would be:
Input values of m and n

25 18
Largest value = 25

|5.8 Private Member Functions

Although it is normal practice to place all the data items in a private section and all the functions
in public, some situations may require certain functions to be hidden (like private data) from
the outside calls. Tasks such as deleting an account in a customer file, or providing increment
to an employee are events of serious consequences and therefore the functions handling
such tasks should have restricted access. We can place these functions in the private section.

A private member function can only be called by another function that is a member of its
class. Even an object cannot invoke a private function using the dot operator. Consider a
class as defined below:

class sample

{

int m;
void read(void); // private member function
public:

void update(void);
void write(void);

bs
If s1 is an object of sample, then

sl.read(); // won't work; objects cannot access
// private members

Classes and Objects 0109

is illegal. However, the function read() can be called by the function update() to update
the value of m. :

void sample :: update(void)

{
}

read(); // simple call; no object used

|5.9 Arrays within a Class

The arrays can be used as member variables in a class. The following class definition is
valid.

const int size=10; // provides value for array size

class array
{
int a[size]; // 'a' is int type array
public:
void setval(void);
void display(void);
}s

The array variable a[] declared as a private member of the class array can be used in
the member functions, like any other array variable. We can perform any operations on it
For instance, in the above class definition, the member function setval() sets the values of
elements of the array al 1, and display() function displays the values. Similarly, we may
use other member functions to perform any other operations on the array values.

Let us consider a shopping list of items for which we place an order with a dealer every
month. The list includes details such as the code number and price of each item. We would
like to perform operations such as adding an item to the list, deleting an item from the list
and printing the total value of the order. Program 5.3 shows how these operations are
implemented using a class with arrays as data members.

#include <iostream>

using namespace std;
const m=50;

class ITEMS
(Contd)

i10e Object-Onented Programming with C++

———

int itemCode[m];
float itemPrice[m];
int count;
pubtic:
void (NT{void){count = 0;} [/ initializes count to 0
void getitem(void);
void displaySum(void);
void remove(void);
void displayltems(void);

1
J/=======zzzzzzz=zs=z=sszzssssscssssssss=cocnssssssssazssss
void ITEMS :: getitem(void) /) assign values to data
// members of item
{
cout << "Enter item code :";
cin >> itemCode[count];
cout << "Enter item cost :";
cin >> itemPrice{count];
count++;
}
void ITEMS :: displaySum(void) // display total value of
J/oall items
{

float sum = 0;
for(int 1=0; i<count; i++)

. sum = sum + itemPrice(i];
cout << "\nTotal value :" << sum << "\n";
}
void ITEMS :: remove(void) // delete a specified item
{
int a;
cout << "Enter item code :";
cin >> a;

for(int i=0; i<count; i++)
if(itemCode(i] == a)
itemPrice[i] = 0;

}

void ITEMS :: displayltems(void) // displaying items
{

(Contd)

~ Classes and Objects

cout << "\nCode Price\n";

for(int i=0; i<count; i++)

{

caut <<"\n" << jtemCode[i};

—o111

cout <<" " << jtemPrice[i];
I .
cout << *\n";
}
//===========================:============================
int main()
{
ITEMS order;
order.CNT();
Tint x;
do // do....while loop
{
cout << "\nYou can do the following;"
<< "Enter appropriate number \n";
cout << "\nl : Add an item “;
cout << "\n2 : Display total value";
cout << "\n3 : Delete an item";
cout << "\nd : Display all items";
cout << "\n5 : Quit";
cout << "\n\nWhat is your option?";
cin >> x;
switch(x)
{
case 1 : order.getitem(); break;
case 2 : order.displaySum(); break;
case 3 : order.remove(); break;
case 4 : order.displayltems(); break;
case 5 : break;
default : cout << "Error in input; try again\n";
}
} whi]g(x 1= 5); // do...while ends
return 0;
}

PROGRAM 5.3

112e Object-Oriented Programming with C++
The output of Program 5.3 would be:

You can do the following; Enter appropriate number
: Add an item

: Display total value

: Delete an item

: Display all items

¢ Quit

O W N

What is your option?l
Enter item code :111
Enter item cost :100

You can do the following; Enter appropriate number
: Add an item

: Display total value

: Delete an item

: Display all items

: Quit

B W N

What is your option?l
Enter item code :222
Enter item cost :200

You can do the following; Enter appropriate number
: Add an item

: Display total value

: Delete an item

: Display all items

: Quit

N w N =

What is your option?l
Enter item code :333
Enter item cost :300

You can do the following; Enter appropriate number
: Add an item

: Display total value

: Delete an item

: Display all items

¢ Quit

W =

What is your option?2
Total value :600

(Contd)

Classes and Objects 113

You can do the following; Enter appropriate number
: Add an item

: Display total value

: Delete an item

: Display all items

: Quit

gRswWw N =

What is your option?3
Enter item code :222

You can do the following; Enter appropriate number
: Add an item

: Display total value

: Delete an item

: Display all items

: Quit

[Sa I~ RO R S R

What is your option?4
Code Price

111 100
222 0
333 300

ou can do the following; Enter appropriate number
: Add an item
: Display total value
: Delete an item
: Display all items
: Quit

W - <

What is your option?5

rote

The program uses two arrays, namely itemCode[] to hold the code number of items and
itemPrice[] to hold the prices. A third data member count is used to keep a record of
items in the list. The program uses a total of four functions to implement the operations
to be performed on the list. The statement

const int m = 50;
defines the size of the array members.
The first function CNT() simply sets the variable count to zero. The second function

getitem() gets the item code and the item price interactively and assigns them to the array
members itemCode[count] and itemPrice[count]. Note that inside this function count

T imessso= = T ozEs s % wew R

1160 Object-Oriented Programming with C++

item a, b, c3 // count is initialized to zero
a.getcount(); // display count SR
b.getcount();

c.getcount();

a.getdata(100); // getting data into ‘object a
b.getdata(200); // getting data into object b.
c.getdata(300); // getting data into object ¢

cout << "After reading data" << "\n";

a.getcount(); // display count
b.getcount();

c.getcount();

return 0;

PROGRAM 5.4

The output of the Program 5.4 would be:

count:
count:
count:
After r
count:
count:
count:

ading data

wWwwm o oo

note

Notice the following statement in the program:

int item :: count; // definition of static data member

Note that the type and scope of each static member variable must be defined outside the
class definition. This is necessary because the static data members are stored separately
rather than as a part of an object. Since they are associated with the class itself rather than
with any class object, they are also known as class variables.

The static variable count is initialized to zero when the objects are created. The count is
incremented whenever the data is read into an object. Since the data is read into objects
three times, the variable count is incremented three times. Because there is only one copy of
count shared by all the three objects, all the three output statements cause the value 3 to
be displayed. Figure 5.4 shows how a static variable is used by the objects.

Classes and Objects 0117

Obiject 1 Object 2 Object 3
number number number
100 200 300
N N | 1 i PR
AN SN i 1 i Pl
N SN | 1 P L
o ~o | | e e
SO N 1 [t e
AN \\L {,/ e
SN [’/I i
< N . .
~ N .

N i 7 i -~
~ FAARN P
So { e SO i -

S : L ~o : ///

AR T
3

count

(common to all three objects)

'Fig.54 & Sharing of a static data member

Static variables are like non-inline member functions as they are declared in a class
declaration and defined in the source file. While defining a static variable, some initial
value can also be assigned to the variable. For instance, the following definition gives count
the initial value 10.

int item :: count = 10;

|5.12 Static Member Functions

Like static member variable, we can also have static member functlons A member function
that is declared static has the followmg properties:

A static function can have access to only other static members (functions or
variables) declared in the same class. :

Astatic member function can be called using the class name (instead of its objects)
as follows:

class-name :: function-name;

Program 5.5 illustrates the implementation of these characteristics. The statie function
showcount() displays the number of objects created till that moment. A count of number of
objects created is maintained by the static variable count.

The function showcode() displays the code number of each object.

120@ Object-Oriented Programming with C++

The array manager contains three objects(managers), namely, manager{0], manager{1]
and manager{2], of type emplo;-ee class. Similarly, the foreman array contains 15 objects
(foremen) and the worker array contains 75 objects(workers).

Since an array of objects behaves like any other array, we can use the usual array-
accessing methods to access individual elements, and then the dot member operator to access
the member functions. For example, the statement

manager{i].putdata();

will display the data of the ith element of the array manager. That is, this statement
requests the object manager[i] to invoke the member function putdata().

An array of objects is stored inside the memory in the same way as a multi-dimensional
array. The array manager is represented in Fig. 5.5. Note that only the space for data items
of the objects is created. Member functions are stored separately and will be used by all the
objects.

name
manager{0]
age
name
manager{1]
age
name
manager{2]
age

Fig.5.5 ¢« Storage of data items of an objéct array

Program 5.6 illustrates the use of object arrays.

ARRAYS OF OBJECTS

#include <iostream>
using namespace std;

class employee
(Contd)

Classes and Objects o121

{ : .
char - name[30]; // string as class member
float age; :

.public:

void getdata(void);
void putdata(void);

s

void employee :: getdata(void)

{
cout << "Enter name: ";
cin >> name;
cout << "Enter age: “;
cin >> age;
} ;
void employee :: putdata(void)
{
cout << "Name: " << name << "\n";
cout << "Age: " << age << "\n";
}
const int size=3;
int main()
{
employee manager[size];
for(int i=0; i<size; i++)
{
.cout << "\nDetails of manager" << i+l << "\n";
manager[i].getdata();
}
cout << "\n";
for(i=0; i<size; i++)
{
cout << "\nManager" << i+l << "\n";
manager{i] .putdata();
return 0;
}

PROGRAM 5.6

This being an interactive program, the input data and the program output are shown below:

Interactive input
Details of managerl
Enter name: xXx
Enter age: 45

122@ Object-Oriented Programming with C++

Details of manager2
Enter name: yyy
Enter age: 37

Details of manager3
Enter name: zzz

Enter age: 50

Program output

Managerl
Name: xxx
Age: 45
Manager?
Name: yyy
Age: 37
Manager3
Name: zzz
Age: 50

|5.14 Objects as Function Arguments

Like any other data type, an object may be used as a function argument. This can be done
in two ways:

A copy of the entire object is passed to the function.
Only the address of the object is transferred to the function.

The first method is called pass-by-value. Since a copy of the object is passed to the function,
any changes made to the object inside the function do not affect the object used to call the
function. The second method is called pass-by-reference. When an address of the object is
passed, the called function works directly on the actual object used in the call. This means
that any changes made to the object inside the function will reflect in the actual object. The
pass-by reference method is more efficient since it requires to pass only the address of the
object and not the entire object.

Program 5.7 illustrates the use of objects as function arguments. It performs the addition
of time in the hour and minutes format.

#i

OBJECTS 45, ARGUMENTS |

Classes and Objects 0123

nclude <iostream>

using namespace std;

ass time

cl
{
int hours;
int minutes;
public:
void gettime(int h, int m)
{ hours = h; minutes = m; }
void puttime(void))
{ p
cout << hours << " hours and ";
cout << minutes << " minutes " << "\n";
}
void sum(time, time); // decloration with objects as arguments
}s : ,
void time :: sum(time t1, time t2) // tl, t2 are objects
{
minutes = tl.minutes + tZ2.minutes;
hours = minutes/60; =~
minutes = minutes%60; RN SRRk
hours = hours + tl.hours + t2.hours; '
} L ; "
int main()
{

+

time T1, T2, T3;

Tl.gettime(2,45); // get T1°°
T2.gettime(3,30); /] get T2

© T3.sum(T1,12);// T3=TI1+72

s Tl.puttime(); // disple'TI

cout << "T1 =

cout << "T2 = "; T2.puttime(); . -//.display 12
cout << "T3 = "; T3.puttime(); // display T3 .
return 0; ‘

. PROGRAM 5.7

1240 Object-Oriented Programming with C++

The output of Program 5.7 would be:

Tl = 2 hours and 45 minutes
T2 = 3 hours and 30 minutes
T3 = 6 hours and 15 minutes

role

Since the member function sum() is invoked by the object T3, with the objects T1 and T2
as arguments, it can directly access the hours and minutes variables of T3. But, the
members of T1 and T2 can be accessed only by using the dot operator (like T1.hours and
T1.minutes). Therefore, inside the function sum(), the variables hours and minutes refer
to T3, T1l.hours and T1.minutes refer to T1, and T2.hours and T2.minutes refer to T2.

Figure 5.6 illustrates how the members are accessed inside the function sum().

hours 6 T1.hours 2 T2.hours 3
- 15 - > 45 30
minutes T1.minutes T2.minutes
(T1+ T2)

e

T3. sum(T1, T2)

Fig. 5.6 <> Accessing members of objects within a called funcytién I

An object can also be passed as an argument to a non-member function. However, such
functions can have access to the public member functions only through the objects passed
as arguments to it. These functions cannot have access to the private data members.

|5.15 Friendly Functions

We have been emphasizing throughout this chapter that the private members cannot be
accessed from outside the class. That is, a non-member function cannot have an access to
the private data of a class. However, there could be a situation where we would like two
classes to share a particular function. For example, consider a case where two classes,
manager and scientist, have been defined. We would like to use a function income_tax()
to operate on the objects of both these classes. In such situations, C++ allows the common
function to be made friendly with both the classes, thereby allowing the function to have
access to the private data of these classes. Such a function need not be a member of any of
these classes.

Classes and Objects 9125

To make an outside function “friendly” to a class, we have to simply declare this function
as a friend of the class as shown below:

class ABC

s

.....

.....

friend void xyz(void); // declaration

The function declaration should be preceded by the keyword friend. The function is
defined elsewhere in the program like a normal C++ function. The function definition does
not use either the keyword friend or the scope operator ::. The functions that are declared
with the keyword friend are known as friend functions. A function can be declared as a
friend in any number of classes. A friend function, although not a member function, has
full access rights to the private members of the class.

A friend function possesses certain special characteristics:

*
»

»

»

»

*

It is not in the scope of the class to which it has been declared as friend.

Since it is not in the scope of the class, it cannot be called using the object of that
class.

It can be invoked like a normal function without the help of any object.

Unlike member functions, it cannot access the member names directly and has to
use an object name and dot membership operator with each member name.(e.g.
Ax).

It can be declared either in the public or the private part of a class without affect-
ing its meaning.

Usually, it has the objects as arguments.

The friend functions are often used in operator overloading which will be discussed later.

Program 5.8 illustrates the use of a friend function.

" FRIEND FUNCTION

#include <iostream>

. using namespace std;

class sample
(Contd)

126 @ Object-Oriented Programming with C++

int a;
int b;
public:

void setvalue() {a=25; b=40; }.
friend float mean(sample s);

b

float mean(sample s)

{

L

.

return float(s.a + s.b)/2.0;

int main()
{
sample X; // object X
X.setvalue();
cout << "Mean value = " << mean(X) << "\n";
return 0;
}

PROGRAM 5.8

The output of Program 5.8 would be:

Mean value = 32.5

rnole

The friend function accesses the class variables a and b by using the dot operator and the
object passed to it. The function call mean(X) passes the object X by value to the friend
function.

Member functions of one class can be friend functions of another class. In such cases,
they are defined using the scope resolution operator as shown below:

class X

.....
.....

int funl(); // member function of X

.....

class Y

{

Classes and Objects -0 127

.....

friend int X :: funl(); // funl() of X
// is friend of Y

The function funl1() is a member of class X and a friend of class Y.

We can also declare all the member functions of one class as the friend functions of
another class. In such cases, the class is called a friend class. This can be specified as follows:

friend class X; // all member functions of X are
// friends to Z
bs

Program 5.9 demonstrates how friend functions work as a bridge between the classes.

#include <iostream>

using namespace std;

class ABC; // Forward declaration
e /!
class XYZ .
{
int x;
public:
void setvalue(int i) {x = i3}
friend void max(XYZ, ABC);

class ABC
{
int a;
public:
void setvalue(int i) {a = i;}
friend void max(XYZ, ABC);

(Contd)

128 @ Object-Oriented Programming with C++

--- /!
void max(XYZ m, ABC n) // Definition of friend
{
if(m.x >= n.a)
cout << m.x;
else
cout << n.a;
}
[[~mmmmmm oo /!
int main()
{
ABC abc;
abc.setvalue(10);
XYZ xyz;
xyz.setvalue(20);
max(xyz, abc);
return 0;
}
PROGRAM 5.9
The output of Program 5.9 would be:
20
rnote \

The function max() has arguments from both XYZ and ABC. When the function max() is
declared as a friend in XYZ for the first time, the compiler will not acknowledge the
presence of ABC unless its name is declared in the beginning as

class ABC;

This is known as ‘forward’ declaration.
_ J

As pointed out earlier, a friend function can be called by reference. In this case, local
copies of the objects are not made. Instead, a pointer to the address of the object is passed
and the called function directly works on the actual object used in the call.

This method can be used to alter the values of the private members of a class. Remember,
altering the values of private members is against the basic principles of data hiding. It
should be used only when absolutely necessary.

Program 5.10 shows how to use a common friend function to exchange the private values
of two classes. The function is called by reference.

Classes and Objects 129

#include <jostream>

using namespace std;
class class_2;

class class_1
{
int valuel;
pubTic:
void indata(int a) {valuel = a;}
void display(void) {cout << valuel << "\n";}
friend void exchange(class_1 &, class_2 &);

}s

class class_2
{
int value2;
public:
void indata(int a) {value2 = a;}
void display(void) {cout << value2 << "\n";}
friend void exchange(class_1 &, class 2 &);

}s

void exchange(class_1 & x, class 2 & y)

{

int temp = x.valuel;
x.valuel = y.value2;
y.value2 = temp;

}

int main()

{
class_1 Cl1;
class_2 (2;

Cl.indata{100);
C2.indata(200);

cout << "Values hefore exchange" << "\n";
Cl.display();
C2.display();

(Contd)

130& Object-Oriented Programming with C+-+

~ exchange(C1, C2); // swapping

cout << "Values after exchange " << "\n";
Cl.display();
C2.display();

return 0;

PROGRAM 5.10

The objects x and y are aliases of C1 and C2 respectively. The statements

int temp = x.valuel
x.valuel y.value2;
y.value2 = temp;

directly modify the values of valuel and value2 declared in class_1 and class_2.
Here is the output of Program 5.10:

Values before exchange
100
200
Values after exchange
200
100

|5.16 Returning Objects

A function cannot only receive objects as arguments but also can return them. The example
in Program 5.11 illustrates how an object can be created (within a function) and returned to
another function

| RETURNING OBJECTS

#include <iostream>

using namespace std;

class complex : /] x + iy form
{
float x; // real part
float y; // imaginary part
public:

void input(float real, float imag)
{ x = real; y = imag; }
(Contd)

Classes and Objects 0131

friend complex sum(complex, complex);

void show{complex);

b

complex sum(complex cl, complex c2)

{
complex c3; // objects c¢3 is created
c3.x = cl.x + c2.x;
c3.y = cl.y + c2.y;
return(c3); // returns object c3
}

void complex :: show(complex c)

{
}

cout << ¢c.x << " + " << c.y << "\n";

int main()

{
complex A, B, C;

A.input(3.1, 5.65);
B.input(2.75, 1.2);

C = sum(A, B); // C=A+B
cout << "A = "; A.show(A);

cout << "B = "; B.show(B);

cout << "C = "; C.show(C);
return 0;

PROGRAM 5.11

Upon execution, Program 5.11 would generate the following output:

A =3.1+ j5.65
B =2.75 + jl.2
C =5.85 + jb.85

The program adds two complex numbers A and B to produce a third complex number C
and displays all the three numbers.

13260 Object-Oriented Programming with C++

|5.17 const Member Functions

If a member function does not alter any data in the class, then we may declare it as a const
member function as follows:

void mul(int, int) const;
double get balance() const;

The qualifier const is appended to the function prototypes (in both declaration and definition).
The compiler will generate an error message if such functions try to alter the data values.

|5.18 Pointers to Members

It is possible to take the address of a member of a class and assign it to a pointer. The
address of a member can be obtained by applying the operator & to a “fully qualified” class
member name. A class member pointer can be declared using the operator ::* with the class
name. For example, given the class

class A
{
private:
int m;
public:
void show();

bs
We can define a pointer to the member m as follows:
int A::* ip = &A :: m;
The ip pointer created thus acts like a class member in that it must be invoked with a

class object. In the statement above, the phrase A::* means “pointer-to-member of A class”.
The phrase &A::m means the “address of the m member of A class”.

Remember, the following statement is not valid:
int *ip = &m; // won't work

This is because m is not simply an int type data. It has meaning only when it is associated
with the class to which it belongs. The scope operator must be applied to both the pointer
and the member.

Classes and Objects €133
The pointer ip can now be used to access the member m inside member functions (or
friend functions). Let us assume that a is an object of A declared in a member function. We

can access m using the pointer ip as follows:

cout << a.*ip;y // display
cout << a.m; // same as above

Now, look at the following code:
ap = &a; // ap is pointer to object a
cout << ap -> *ip; // display m
cout << ap -> m; // same as above
The dereferencing operator ->* is used to access a member when we use pointers to both
the object and the member. The dereferencing operator.* is used when the object itself is

used with the member pointer. Note that *ip is used like a member name.

We can also design pointers to member functions which, then, can be invoked using the
dereferencing operators in the main as shown below :

(object-name .* pointer-to-member function) (10);
(pointer-to-object ->* pointer-to-member function) (10)

The precedence of () is higher than that of .* and ->*, so the parentheses are necessary.

Program 5.12 illustrates the use of dereferencing operators to access the class members.

| DEREFERENCING OPERATORS -
#include <iostream>

using namespace std;

class M
{
int x;
int y;
public:
void set xy(int a, int b)
{
X = aj
y = b;
}

friend int sum(M m);

(Contd)

134 Object-Oriented Programming with C++

}s

int sum(M m)

{ ,
int M ::* px = &M :: x;
int M :i*py = &M :: vy,

M *pm = &m;
int S = m.*px + pm->*py;
return S;

}

int main()

{
Mn;
void (M :: *pf)(int,int) = &M :: set xy;
(n.*pf)(10,20); _
cout << "SUM = " << sum(n) << "\n";
M *op = &n;
(op->*pf) (30,40); ,
cout << "SUM = " << sum(n) << "\n";
return 0;

}

PROGRAM 5.12

The output of Program 5.12 would be:

sum = 30
sum = 70

15.19 Local Classes

Classes can be defined and used inside a function or a block. Such classes are called local
classes. Examples:

void test(int a) // function

.....

class student // local class

.....

..... // class definition

Classes and Objects —e135

.....

student si(a); // create student object
..... // use student object

Local classes can use global variables (declared above the function) and static variables
declared inside the function but cannot use automatic local variables. The global variables
should be used with the scope operator (::).

There are some restrictions in constructing local classes. They cannot have static data
members and member functions must be defined inside the local classes. Enclosing function
cannot access the private members of a local class. However, we can achieve this by declaring
the enclosing function as a friend.

t

~ SUMMARY - _—

& A class is an extension to the structure data type. A class can have both variables and
functions as members.

By default, members of the class are private whereas that of structure are public.

g 8

Only the member functions can have access to the private data members and private
functions. However the public members can be accessed from outside the class.

& In C++, the class variables are called objects. With objects we can access the public
members of a class using a dot operator.

& We can define the member functions inside or outside the class. The difference between
a member function and a normal function is that a member function uses a membership
'{dentity' label in the header to indicate the class to which it belongs.

¢ The memory space for the objects is allocated when they are declared. Space for member
variables is allocated separately for each object, but no separate space is allocated for
member functions.

<> A data member of a class can be declared as a static and is normally used to maintain
values common to the entire class.

The static member variables must be defined outside the class.

g 8

A static member function can have access to the static members declared in the same
class and can be called using the class name.

&> C++ allows us to have arrays of objects.

136@ Object-Oriented Programming with C++

<> We may use objects as function arguments.

<> A function declared as a friend is not in the scope of the class to which it has been
declared as friend. It has full access to the private members of the class.

g 8

A function can also return an object.

If a member function does not alter any data in the class, then we may declare it as a

const member function. The keyword const is appended to the function prototype.

<v Itisalso possible to define and use a class inside a function. Such a class is called a local

class.

Key Terms

abstract data type
arrays of objects
class
class declaration

. class members
class variables
const member functions
data hiding
data members
dereferencing operator
dot operator
elements
encapsulation
friend functions
inheritance
inline functions
local class
member functions
nesting of member functions

VYYVYVYYYYYYVYVYYYVYVYYYYY

I Review Questions

5.1 How do structures in C and C++ differ?

VVYVVYVYVYVYVYYVYYVYVYYYYVYYVYY

objects
pass-by-reference
pass-by-value
period operator
private

prototype

public

scope operator
scope resolution
static data members
static member functions

- static variables

struct

structure
structure members
structure name
structure tag
template

5.2 What is a class? How does it accomplish data hiding?

Classes and Objects 0137

5.3 How does a C++ structure differ from a C++ class?
5.4 What are objects? How are they created?
5.5 How is a member function of a class defined?

5.6 Can we use the same function name for a member function of a class and an
outside function in the same program file? If yes, how are they distinguished? If
no, give reasons.

ct
N

Describe the mechanism of accessing data members and member functions in the
following cases:

(a) Inside the main program.

(b) Inside a member function of the same class.

(¢) Inside a member function of another class.
5.8 When do we declare a member of a class static?

5.9 What is a friend function? What are the merits and demerits of using friend
functions?

5.10 State whether the following statements are TRUE or FALSE.
(a) Data items in a class must always be private.

(b) A function designed as private is accessible only to member functions of that
class.

(¢) A function designed as public can be accessed like any other ordinary
functions.

(d) Member functions defined inside a class specifier become inline functions by
default.

(e) Classes can bring together all aspects of an entity in one place.
(f) Class members are public by default.

(g) Friend functions have access to only public members of a class.
(h) An entire class can be made a friend of another class.

(i) Functions cannot return class objects.

(j) Data members can be initialized inside class specifier.

l Debugging Exercises

5.1 Identify the error in the following program.

#include <iostream.h>
struct Room

{
int width;
int length;

138e

5.2

5.3

Object-Oriented Programming with C++

void setValue(int w, int 1)

{
width = w;
length = 1;
}
bs
void main()
{
Room objRoom;
objRoom.setValue(12, 1,4);
}

Identify the error in the following program.

#include <iostream.h>
class Room
{
int width, height;
void setValue(int w, int h)
{
width = w;
height = h;

}s

void main()

{
Room objRoom;
objRoom.width = 12;

Identify the error in the following program.

#include <iostream.h>
class Item
{
private:

static int count;
public:

Item()

{

Classes and Objects €139

count++;
}
int getCount()
{
return count;
}
int* getCountAddress()
{
return count;
}
}s

int Item::count = 0;

void main()

{
Item objIteml;
Item objltem?;

cout << objIteml.getCount() << ' ';
cout << objItem2.getCount() << ' ';

cout << objIteml.getCountAddress() << ' ';
cout << objItem2.getCountAddress() << ' *;

5.4 Identify the error in the following program.

#include <iostream.h>
class staticFunction
{

static int count;
public:

static void setCount()

{

count++;

}

void displayCount()

{

cout << count;

140@

5.5

Object-Oriented Programming with C++

}s

int staticFunction::count = 10;

void main()

{
staticFunction objl;
objl.setCount(5);
staticFunction::setCount();
objl.displayCount();

}

Identify the error in the following program.

#include <iostream.h> '
class Length

{

int feet;
float inches;
public:
Length()
{
feet = 5;

inches = 6.0;
}
Length(int f, float in)
{
feet = f;
inches=in;
}
Length addlLength(Length 1)
{
1.inches += this->inches;
1.feet += this->feet;
if(1.inches>12)
{
1.inches-=12;
1.feet++;

}

return 1;

5.6

Classes and Objects

}
int getFeet()

{

return feet;

}
float getInches()

{

return inches;

}s
void main()
{
Length objLengthl;
Length objlLengthl(5, 6.5);

@ 141

objlLengthl = objLengthl.addLength(objLength2);

cout << objlengthl.getFeet() << '
cout << objLengthl.getInches() << '

}

Identify the error in thé following program.

#include <iostream.h>
class Room;
void Area()
{
int width, height;
class Room
{
int width, height;
public:

void setValue(int w, int h)

{
width = w;
height = h;

}

void displayValues()

{

cout << (float)width << ' ' <<

(float)height;

VYVYYVYVYYYYVYYVYY

Key Concepts

Constructing objects
Constructors

Constructor overloading
Default argument constructor
Copy constructor
Constructing matrix objects
Automatic initialization
Parameterized constructors
Default constructor
Dynamic initialization
Dynamic constructor
Destructors

|6.1 Introduction

We have seen, so far, a few examples of
classes being implemented. In all the cases,
we have used member functions such as
putdata() and setvalue() to provide initial
values to the private member variables. For
example, the following statement

A.input();

invokes the member function input(),
which assigns the initial values to the data
items of object A. Similarly, the statement

x.getdata(100,299.95);

passes the initial values as arguments to
the function getdata(), where these values
are assigned to the private variables of
object x. All these 'function call' statements
are used with the appropriate objects that

have already been created. These functions cannot be used to initialize the member variables
at the time of creation of their objects.

Constructors and Destructors 9145

Providing the initial values as described above does not conform with the philosophy of
C++ language. We stated earlier that one of the aims of C++ is to create user-defined data
types such as class, that behave very similar to the built-in types. This means that we
should be able to initialize a class type variable (object) when it is declared, much the same
way as initialization of an ordinary variable. For example,

int m = 20;
float x = 5.75;

are valid initialization statements for basic data types.

Similarly, when a variable of built-in type goes out of scope, the compiler automatically
destroys the variable. But it has not happened with the objects we have so far studied. It is
therefore clear that some more features of classes need to be explored that would enable us
to initialize the objects when they are created and destroy them when their presence is no
longer necessary.

C++ provides a special member function called the constructor which enables an object to
initialize itself when it is created. This is known as automatic initialization of objects. It also
provides another member function called the destructor that destroys the objects when they
are no longer required.

|6.2 Constructors

A constructor is a ‘special’ member function whose task is to initialize the objects of its class.
It is special because its name is the same as the class name. The constructor is invoked
whenever an object of its associated class is created. It is called constructor because it
constructs the values of data members of the class. :

A constructor is declared and defined as follows:

// class with a constructor

class integer

{

int m, n;
public:
integer(void); // constructor declared
bs
integer :: integer(void) // constructor defined

148 0— Object-Oriented Programming with C++

#include <iostream>

using namespace std;

class integer

{
int m, n;
public:
integer(int, int); ~// constructor declared
void display(void)
{
COUt << n m = " << m << l|\nll;
cout << " n - " << n << "\nll;
}
bs
integer :: integer(int x, int y) // constructor defined
{
m=x; n=y;
}
int main()
{
integer int1(0,100); // constructor called implicitly
integer int2 = integer(25, 75); // constructor colled explicitly
cout << "\nOBJECT1" << "\n";
intl.display();
ceut ‘<< ™\nOBJECT2" << "\n";
int2.display();
return 0;
}

PROGRAM 6.1

Program 6.1 displays the following output:
0BJECT1

m=20
n = 100

Constructors and Destructors 149

OBJECTZ2
m = 25
n=175

The constructor functions can also be defined as inline functions. Example:

class integer
{
int m, n;
public:
integer(int x, int y) // Inline constructor

The parameters of a constructor can be of any type except that of the class to which it
belongs. For example,

class A

is illegal.

However, a constructor can accept a reference to its own class as a parameter. Thus, the
statement

Class A

public:
A(A&);
}s

is valid. In such cases, the constructor is called the copy constructor.

1500— Object-Oriented Programming with C++

|6.4 Multiple Constructors in a Class

So far we have used two kinds of constructors. They are:

integer(); // No arguments
integer(int, int); // Two arguments

In the first case, the constructor itself supplies the data values and no values are passed
by the calling program. In the second case, the function call passes the appropriate values
from main(). C++ permits us to use both these constructors in the same class. For example,
we could define a class as follows:

class integer

{
int m, n;
public:

integer() {m=0; n=0;} // constructor 1
integer(int a, int b)

{m=a; n=b;} // constructor 2
integer(integer & i)

{m=1.m n=1i.n;} // constructor 3

b

This declares three constructors for an integer object. The first constructor receives no
arguments, the second receives two integer arguments and the third receives one integer
object as an argument. For example, the declaration

integer I1;

would automatically invoke the first constructor and set both m and n of I1 to zero. The
statement

integer 12(20,40);

would call the second constructor which will initialize the data members m and n of I2 to 20
and 40 respectively. Finally, the statement

integer 13(12);

would invoke the third constructor which copies the values of 12 into I3. In other words, it
sets the value of every data element of I3 to the value of the corresponding data element of
I2. As mentioned earlier, such a constructor is called the copy constructor. We learned in
Chapter 4 that the process of sharing the same name by two or more functions is referred to
as function overloading. Similarly, when more than one constructor function is defined in a
class, we say that the constructor is overloaded.

